Reduced-bias estimator of the Conditional Tail Expectation of heavy-tailed distributions

نویسندگان

  • El hadji Deme
  • Stéphane Girard
  • Armelle Guillou
چکیده

Several risk measures have been proposed in the literature. In this paper, we focus on the estimation of the Conditional Tail Expectation (CTE). Its asymptotic normality has been first established in the literature under the classical assumption that the second moment of the loss variable is finite, this condition being very restrictive in practical applications. Such a result has been extended by Necir et al. (2010) in the case of infinite second moment. In this framework, we propose a reduced-bias estimator of the CTE. We illustrate the efficiency of our approach on a small simulation study and a real data analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Analysis of Multivariate Tail Conditional Expectations

Tail conditional expectations refer to the expected values of random variables conditioning on some tail events and are closely related to various coherent risk measures. In the univariate case, the tail conditional expectation is asymptotically proportional to the value-at-risk, a popular risk measure. The focus of this paper is on asymptotic relations between the multivariate tail conditional...

متن کامل

Reduced-bias estimators for the Distortion Risk Premiums for Heavy-tailed distributions

Estimation of the occurrence of extreme events actually is that of risk premiums interest in actuarial Sciences, Insurance and Finance. Heavy-tailed distributions are used to model large claims and losses. In this paper we deal with the empirical estimation of the distortion risk premiums for heavy tailed losses by using the extreme value statistics. This approach can produce a potential bias i...

متن کامل

Pitfalls in Using Weibull Tailed Distributions

By assuming that the underlying distribution belongs to the domain of attraction of an extreme value distribution, one can extrapolate the data to a far tail region so that a rare event can be predicted. However, when the distribution is in the domain of attraction of a Gumbel distribution, the extrapolation is quite limited generally in comparison with a heavy tailed distribution. In view of t...

متن کامل

An Integrated Functional Weissman Es- Timator for Conditional Extreme Quan- Tiles

• It is well-known that estimating extreme quantiles, namely, quantiles lying beyond the range of the available data, is a nontrivial problem that involves the analysis of tail behavior through the estimation of the extreme-value index. For heavy-tailed distributions, on which this paper focuses, the extreme-value index is often called the tail index and extreme quantile estimation typically in...

متن کامل

Estimation of parameters in heavy - tailed distribution when its second order tail parameter is known ∗ †

Estimating parameters in heavy-tailed distribution plays a central role in extreme value theory. It is well known that classical estimators based on the first order asymptotics such as the Hill, rank-based and QQ-estimators are seriously biased under finer second order regular variation framework. To reduce the bias, many authors proposed the so-called second order reduced bias estimators for b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013